This script loads in the differentially expressed genes in cis of adipose CpGs and analyses if their expression changes with DNAm.


Setup

Load packages

library(edgeR)
library(cinaR)
library(limma)
library(tidyverse)
library(GenomicFeatures)
library(AnnotationHub)
library(SummarizedExperiment)
library(lme4)
library(lmerTest)

Load df which maps CpGs to genes within 100kb

load('../GOTO_Data/DEGs/Fat-100kb.Rdata')
head(df)
##          cpg        gene_ens       gene
## 1 cg02282833 ENSG00000113389       NPR3
## 2 cg02282833 ENSG00000181495 AC026703.1
## 3 cg03689324 ENSG00000129009       ISLR
## 4 cg03689324 ENSG00000137868      STRA6
## 5 cg03689324 ENSG00000140464        PML
## 6 cg03689324 ENSG00000140481     CCDC33

Load results of DEG analysis

load('../GOTO_Data/DEGs/Fat-DEG.Rdata')

Merge

deg$gene_ens <- rownames(deg)
deg <- deg %>% 
  dplyr::select(gene_ens, 
                logFC, deg_p = pvalue, 
                deg_padj = padj)

df <- right_join(df, deg, by='gene_ens')
head(df)
##          cpg        gene_ens   gene       logFC        deg_p     deg_padj
## 1 cg02282833 ENSG00000113389   NPR3 -0.25520983 3.532219e-03 2.201476e-02
## 2 cg03689324 ENSG00000140464    PML -0.07787649 3.678145e-03 2.240324e-02
## 3 cg25662390 ENSG00000109103 UNC119 -0.10813294 5.989413e-05 1.415687e-03
## 4 cg25662390 ENSG00000109107  ALDOC -0.32809022 1.188488e-06 6.370293e-05
## 5 cg19575372 ENSG00000163064    EN1 -0.18533940 4.198761e-04 4.635194e-03
## 6 cg02528008 ENSG00000171444    MCC  0.14204840 4.298163e-06 1.919846e-04

DNAm data

Load top CpG results and methData

load('../GOTO_Data/GOTO_methData-filtered.Rdata')

Save only adipose samples

methData <- methData[ , methData$tissue == 'fat']

Convert betas to data frame

beta_rows <- methData$Basename
betas <- as.data.frame(t(assay(methData)))
rownames(betas) <- beta_rows

Save only CpGs to be tested

betas <- betas %>% dplyr::select(any_of(df$cpg))
dim(betas)
## [1] 178  72

Phenotype data

load("../GOTO_Data/GOTO_targets-filtered.Rdata")

Filter adipose

targets <- targets %>% 
  filter(tissue == 'fat')

Save covariates

targets <- targets %>% 
  dplyr::select(IOP2_ID, timepoint, age, sex, smoke,
                plate, array_row, Basename) %>% 
  mutate(ID = paste0(IOP2_ID, '_', timepoint))

RNAseq data

Create ID list

ID_list <- targets %>% mutate(
  ID = paste0(IOP2_ID, '_', timepoint)
) %>% dplyr::select(ID)

Load RNAseq data

load('../GOTO_Data/DEGs/expData_adipose.RData')

goto_exp <- expData %>%  
  dplyr::select(IOP2_ID, timepoint, final_plate,
                       starts_with('ENS')) %>% 
  mutate(
  ID = str_c(IOP2_ID, '_', timepoint))

Merge

exp_df <- left_join(ID_list, goto_exp, by = 'ID')

dim(exp_df)
## [1]   178 41655

Fetch gene symbols

ens2gene <- cinaR::grch37

Check data for all genes

check <- df$gene_ens %in% colnames(goto_exp)
xtabs(~check)
## check
## TRUE 
##   99

Save genes we will check

av_genes <- df$gene_ens
head(av_genes)
## [1] "ENSG00000113389" "ENSG00000140464" "ENSG00000109103" "ENSG00000109107"
## [5] "ENSG00000163064" "ENSG00000171444"

Filter covariates and genes

goto_exp <- goto_exp %>%  
  dplyr::select(IOP2_ID, 
                timepoint, 
                final_plate,
                all_of(av_genes)) %>% 
  mutate(
  ID = str_c(IOP2_ID, '_', timepoint)
)

Merge with samples we have DNAm data for

ID_list <- targets %>% 
  mutate(
    ID = paste0(IOP2_ID, '_', timepoint)) %>% 
  dplyr::select(ID, Basename)
exp_df <- inner_join(ID_list, goto_exp, by = 'ID')
dim(exp_df)
## [1] 150  62

Ordering and filtering

Ensure DNAm data for all samples

targets <- targets %>% filter(Basename %in% rownames(betas))

print(paste0('We have complete covariate and DNAm data for ',
             nrow(targets), ' samples'))
## [1] "We have complete covariate and DNAm data for 178 samples"

Ensure expression data for all samples

targets <- targets %>% filter(Basename %in% exp_df$Basename)

print(paste0('We have complete data for everything for ',
             nrow(targets), ' samples'))
## [1] "We have complete data for everything for 150 samples"

Order uuid alphabetically

targets <- targets[order(targets$Basename),]
rownames(targets) <- targets$Basename
dim(targets)
## [1] 150   9

Order DNAm data

betas <- betas[rownames(betas) %in% targets$Basename, ]
betas <- betas[order(rownames(betas)), ]
dim(betas)
## [1] 150  72

Order expression data frame

exp_df <- exp_df[exp_df$Basename %in% targets$Basename, ]
exp_df <- exp_df[order(exp_df$Basename), ]
dim(exp_df)
## [1] 150  62

Save

save(betas, exp_df, targets, df,
     file='../GOTO_Data/eQTM/all_eQTMobjects-fat.Rdata')

Analysis

Bind data frames

lm_df <- cbind(targets,
               betas,
               exp_df)

Run models

for(i in 1:nrow(df)){
  cpg <- df$cpg[i]
  gene <- df$gene[i]
  gene_ens <- df$gene_ens[i]
  
  fit <- lmer(substitute(cpg ~ gene_ens + age + sex + smoke +
                           plate + array_row + final_plate +
                           (1|IOP2_ID),
                         list(cpg = as.name(cpg),
                              gene_ens = as.name(gene_ens))),
              data=lm_df)
  
  if(i == 1){
    out <- data.frame(
      cpg = cpg,
      gene = gene,
      gene_ens = gene_ens,
      es = coef(summary(fit))[2,1],
      se = coef(summary(fit))[2,2],
      p = coef(summary(fit))[2,5]
    )
  } else {
    out <- rbind(out,
                 data.frame(
                   cpg = cpg,
                   gene = gene,
                   gene_ens = gene_ens,
                   es = coef(summary(fit))[2,1],
                   se = coef(summary(fit))[2,2],
                   p = coef(summary(fit))[2,5]))
  }
}

Adjust p-values

out$padj <- p.adjust(out$p, method='fdr')

Inspect top

out %>% arrange(padj) %>% head()
##          cpg  gene        gene_ens         es          se            p
## 1 cg02649849 DMRT3 ENSG00000064218 0.01993341 0.001846892 8.215416e-20
## 2 cg03148184 PITX2 ENSG00000164093 0.05923460 0.005773905 2.438325e-18
## 3 cg26708319 PITX2 ENSG00000164093 0.05641919 0.005733204 1.570197e-17
## 4 cg19370653 PITX2 ENSG00000164093 0.06210197 0.006477727 6.770121e-17
## 5 cg07790170 PITX2 ENSG00000164093 0.06962431 0.007406964 4.288950e-16
## 6 cg03943773 PITX2 ENSG00000164093 0.05071661 0.005577768 1.144074e-15
##           padj
## 1 8.133262e-18
## 2 1.206971e-16
## 3 5.181649e-16
## 4 1.675605e-15
## 5 8.492120e-15
## 6 1.887722e-14
eqtm <- out %>% filter(padj <= 0.05) %>% 
  arrange(padj)

Save

Add DEG data

eqtm <- eqtm %>% 
  dplyr::select(cpg, gene,
                eqtm_es = es, eqtm_se = se, eqtm_p = p, 
                eqtm_padj = padj)

eqtm <- inner_join(eqtm, df, by=c('cpg', 'gene'))
eqtm <- eqtm %>% arrange(eqtm_padj)
eqtm
##           cpg    gene       eqtm_es      eqtm_se       eqtm_p    eqtm_padj
## 1  cg02649849   DMRT3  1.993341e-02 1.846892e-03 8.215416e-20 8.133262e-18
## 2  cg03148184   PITX2  5.923460e-02 5.773905e-03 2.438325e-18 1.206971e-16
## 3  cg26708319   PITX2  5.641919e-02 5.733204e-03 1.570197e-17 5.181649e-16
## 4  cg19370653   PITX2  6.210197e-02 6.477727e-03 6.770121e-17 1.675605e-15
## 5  cg07790170   PITX2  6.962431e-02 7.406964e-03 4.288950e-16 8.492120e-15
## 6  cg03943773   PITX2  5.071661e-02 5.577768e-03 1.144074e-15 1.887722e-14
## 7  cg23646776   PITX2  3.645295e-02 4.044028e-03 2.595608e-15 3.670931e-14
## 8  cg24005685   PITX2  5.815366e-02 6.540647e-03 3.590040e-15 4.442674e-14
## 9  cg10895452     EN1 -1.455366e-02 1.683984e-03 1.492518e-14 1.641770e-13
## 10 cg24925400   PITX2  5.023503e-02 5.948266e-03 6.912554e-14 6.843429e-13
## 11 cg01951086   PITX2  6.542884e-02 7.944734e-03 2.485847e-13 2.237262e-12
## 12 cg23806894   PITX2  4.849409e-02 6.307044e-03 2.953658e-12 2.436768e-11
## 13 cg17242937   PITX2  5.104065e-02 6.738782e-03 5.674023e-12 4.320986e-11
## 14 cg21299542   PITX2  3.088919e-02 4.085099e-03 6.658791e-12 4.708716e-11
## 15 cg01733176   PITX2  4.280687e-02 6.015772e-03 6.074817e-11 4.009379e-10
## 16 cg26023087   DMRT3  1.565377e-02 2.226390e-03 9.535956e-11 5.900373e-10
## 17 cg19849728   PITX2  3.800746e-02 5.914208e-03 2.110573e-09 1.229098e-08
## 18 cg14434922   DMRT3  1.340297e-02 2.226531e-03 1.580542e-08 8.692981e-08
## 19 cg05581451   PITX2  3.407584e-02 5.843043e-03 3.950206e-08 2.058265e-07
## 20 cg18792984   TREM1  1.703057e-02 2.939256e-03 4.715314e-08 2.334081e-07
## 21 cg21029045   PITX2  3.718030e-02 6.895944e-03 3.571081e-07 1.683510e-06
## 22 cg19575372     EN1  1.350841e-02 2.527994e-03 4.001800e-07 1.800810e-06
## 23 cg04290158   HOXB8  8.352539e-03 1.639615e-03 1.316360e-06 5.666071e-06
## 24 cg12269436  IFNAR1  1.488650e-03 3.275179e-04 1.321181e-05 5.449872e-05
## 25 cg11284842   NR2F1  6.383606e-03 1.536807e-03 6.076296e-05 2.406213e-04
## 26 cg00354743 PLEKHA1  1.399044e-03 3.522586e-04 1.178478e-04 4.487282e-04
## 27 cg10583043   NR2F1  3.521072e-03 9.036168e-04 1.589722e-04 5.828979e-04
## 28 cg18290233   NR2F1  4.657664e-03 1.199683e-03 1.671354e-04 5.909429e-04
## 29 cg04917446   HOXB3  1.309957e-03 3.420408e-04 1.986658e-04 6.782038e-04
## 30 cg02329038   HOXB8  8.681407e-03 2.433597e-03 5.009987e-04 1.653296e-03
## 31 cg02329038   HOXB3  1.450310e-03 4.429384e-04 1.348738e-03 4.307261e-03
## 32 cg04290158   HOXB3  1.008914e-03 3.177272e-04 1.868043e-03 5.779258e-03
## 33 cg17573415    KAZN  1.225731e-03 4.065612e-04 3.076135e-03 9.228405e-03
## 34 cg16413687    ALX1  2.566748e-02 9.002151e-03 5.074862e-03 1.477680e-02
## 35 cg19429051   NR2F1  3.706883e-03 1.307050e-03 5.362512e-03 1.516825e-02
## 36 cg04917446   HOXB8  5.179747e-03 1.934210e-03 8.370248e-03 2.180670e-02
## 37 cg19375044   APOC1 -1.540643e-04 5.728035e-05 8.072561e-03 2.180670e-02
## 38 cg15117739   HOXB8  3.375876e-03 1.258818e-03 8.250705e-03 2.180670e-02
## 39 cg02329038   HOXB4 -4.652321e-03 1.744879e-03 8.629034e-03 2.190447e-02
## 40 cg12194701    STK3 -1.855826e-03 7.080399e-04 9.827415e-03 2.432285e-02
## 41 cg19375044    APOE -4.740934e-06 1.830334e-06 1.066527e-02 2.575274e-02
## 42 cg04290158   HOXB4 -3.209333e-03 1.263860e-03 1.226092e-02 2.890074e-02
## 43 cg12374581   ARMC6  1.894700e-03 7.534472e-04 1.318020e-02 3.034510e-02
## 44 cg15117739   HOXB3  5.715023e-04 2.286350e-04 1.363973e-02 3.068938e-02
## 45 cg13603764    TGS1 -2.533563e-03 1.020099e-03 1.432342e-02 3.151153e-02
## 46 cg14674171  SAP30L  4.033845e-03 1.634278e-03 1.489749e-02 3.206199e-02
## 47 cg04917446   HOXB2  2.139051e-03 8.846284e-04 1.699767e-02 3.580361e-02
## 48 cg23660235  MAP2K6 -1.003285e-02 4.198830e-03 1.826678e-02 3.767523e-02
## 49 cg13181327   TRDJ1  5.038842e-02 2.163913e-02 2.158030e-02 4.360102e-02
## 50 cg11631547    ZW10 -4.285119e-03 1.855625e-03 2.252713e-02 4.460372e-02
## 51 cg00054771  GPR155  2.257172e-03 9.907244e-04 2.462484e-02 4.780116e-02
##           gene_ens       logFC        deg_p     deg_padj
## 1  ENSG00000064218 -0.33746492 7.907869e-05 1.630238e-03
## 2  ENSG00000164093 -0.21343330 1.677649e-03 1.232473e-02
## 3  ENSG00000164093 -0.21343330 1.677649e-03 1.232473e-02
## 4  ENSG00000164093 -0.21343330 1.677649e-03 1.232473e-02
## 5  ENSG00000164093 -0.21343330 1.677649e-03 1.232473e-02
## 6  ENSG00000164093 -0.21343330 1.677649e-03 1.232473e-02
## 7  ENSG00000164093 -0.21343330 1.677649e-03 1.232473e-02
## 8  ENSG00000164093 -0.21343330 1.677649e-03 1.232473e-02
## 9  ENSG00000163064 -0.18533940 4.198761e-04 4.635194e-03
## 10 ENSG00000164093 -0.21343330 1.677649e-03 1.232473e-02
## 11 ENSG00000164093 -0.21343330 1.677649e-03 1.232473e-02
## 12 ENSG00000164093 -0.21343330 1.677649e-03 1.232473e-02
## 13 ENSG00000164093 -0.21343330 1.677649e-03 1.232473e-02
## 14 ENSG00000164093 -0.21343330 1.677649e-03 1.232473e-02
## 15 ENSG00000164093 -0.21343330 1.677649e-03 1.232473e-02
## 16 ENSG00000064218 -0.33746492 7.907869e-05 1.630238e-03
## 17 ENSG00000164093 -0.21343330 1.677649e-03 1.232473e-02
## 18 ENSG00000064218 -0.33746492 7.907869e-05 1.630238e-03
## 19 ENSG00000164093 -0.21343330 1.677649e-03 1.232473e-02
## 20 ENSG00000124731 -0.31439658 1.806825e-03 1.274287e-02
## 21 ENSG00000164093 -0.21343330 1.677649e-03 1.232473e-02
## 22 ENSG00000163064 -0.18533940 4.198761e-04 4.635194e-03
## 23 ENSG00000120068 -0.18480176 9.267916e-05 1.774144e-03
## 24 ENSG00000142166 -0.06464044 3.305086e-03 2.201476e-02
## 25 ENSG00000175745  0.23809135 6.338898e-05 1.415687e-03
## 26 ENSG00000107679 -0.10311515 1.021780e-05 3.911959e-04
## 27 ENSG00000175745  0.23809135 6.338898e-05 1.415687e-03
## 28 ENSG00000175745  0.23809135 6.338898e-05 1.415687e-03
## 29 ENSG00000120093 -0.08176916 3.416656e-03 2.201476e-02
## 30 ENSG00000120068 -0.18480176 9.267916e-05 1.774144e-03
## 31 ENSG00000120093 -0.08176916 3.416656e-03 2.201476e-02
## 32 ENSG00000120093 -0.08176916 3.416656e-03 2.201476e-02
## 33 ENSG00000189337 -0.18651196 7.980329e-08 7.129094e-06
## 34 ENSG00000180318 -0.18709802 1.627306e-03 1.232473e-02
## 35 ENSG00000175745  0.23809135 6.338898e-05 1.415687e-03
## 36 ENSG00000120068 -0.18480176 9.267916e-05 1.774144e-03
## 37 ENSG00000130208  0.51938046 2.371871e-07 1.589154e-05
## 38 ENSG00000120068 -0.18480176 9.267916e-05 1.774144e-03
## 39 ENSG00000182742  0.09745399 3.917924e-03 2.281747e-02
## 40 ENSG00000104375  0.08687633 1.932048e-04 2.829100e-03
## 41 ENSG00000130203  0.46933715 1.952693e-09 5.233216e-07
## 42 ENSG00000182742  0.09745399 3.917924e-03 2.281747e-02
## 43 ENSG00000105676  0.07580619 4.764042e-03 2.659923e-02
## 44 ENSG00000120093 -0.08176916 3.416656e-03 2.201476e-02
## 45 ENSG00000137574  0.06189770 3.505665e-03 2.201476e-02
## 46 ENSG00000164576 -0.09294551 2.680243e-03 1.841808e-02
## 47 ENSG00000173917 -0.08726220 9.565744e-03 4.661126e-02
## 48 ENSG00000108984  0.21091827 2.606564e-05 7.761767e-04
## 49 ENSG00000211825  0.14730800 4.001570e-03 2.281747e-02
## 50 ENSG00000086827  0.07914324 3.989099e-03 2.281747e-02
## 51 ENSG00000163328 -0.10413344 1.190769e-04 2.127507e-03

Save

save(out, eqtm, file='../GOTO_Data/eQTM/GOTO-fat_eQTM.Rdata')
write_csv(eqtm, file='../GOTO_Data/Tables/ST14.csv')

Session Info

sessionInfo()
## R version 4.2.2 (2022-10-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Rocky Linux 8.10 (Green Obsidian)
## 
## Matrix products: default
## BLAS/LAPACK: /usr/lib64/libopenblas-r0.3.15.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
##  [1] grid      parallel  stats4    stats     graphics  grDevices utils    
##  [8] datasets  methods   base     
## 
## other attached packages:
##  [1] circlize_0.4.15                                    
##  [2] ComplexHeatmap_2.14.0                              
##  [3] RColorBrewer_1.1-3                                 
##  [4] pheatmap_1.0.12                                    
##  [5] clusterProfiler_4.2.2                              
##  [6] AnnotationHub_3.2.2                                
##  [7] BiocFileCache_2.2.1                                
##  [8] dbplyr_2.2.1                                       
##  [9] cinaR_0.2.3                                        
## [10] edgeR_3.40.2                                       
## [11] ggpubr_0.4.0                                       
## [12] GEOquery_2.62.2                                    
## [13] MuSiC_0.2.0                                        
## [14] nnls_1.4                                           
## [15] gplots_3.1.3                                       
## [16] plotly_4.10.1                                      
## [17] SeuratObject_4.1.3                                 
## [18] Seurat_4.3.0                                       
## [19] gridExtra_2.3                                      
## [20] lattice_0.21-8                                     
## [21] bacon_1.22.0                                       
## [22] ellipse_0.4.5                                      
## [23] methylGSA_1.12.0                                   
## [24] sva_3.42.0                                         
## [25] genefilter_1.76.0                                  
## [26] mgcv_1.8-42                                        
## [27] nlme_3.1-162                                       
## [28] limma_3.54.2                                       
## [29] lmerTest_3.1-3                                     
## [30] lme4_1.1-30                                        
## [31] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
## [32] snpStats_1.44.0                                    
## [33] survival_3.5-5                                     
## [34] ggrepel_0.9.1                                      
## [35] ggfortify_0.4.14                                   
## [36] irlba_2.3.5.1                                      
## [37] Matrix_1.5-4.1                                     
## [38] omicsPrint_1.14.0                                  
## [39] MASS_7.3-60                                        
## [40] DNAmArray_2.0.0                                    
## [41] pls_2.8-2                                          
## [42] FDb.InfiniumMethylation.hg19_2.2.0                 
## [43] org.Hs.eg.db_3.14.0                                
## [44] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2            
## [45] GenomicFeatures_1.46.5                             
## [46] AnnotationDbi_1.56.2                               
## [47] IlluminaHumanMethylationEPICmanifest_0.3.0         
## [48] minfi_1.40.0                                       
## [49] bumphunter_1.36.0                                  
## [50] locfit_1.5-9.8                                     
## [51] iterators_1.0.14                                   
## [52] foreach_1.5.2                                      
## [53] Biostrings_2.62.0                                  
## [54] XVector_0.34.0                                     
## [55] SummarizedExperiment_1.24.0                        
## [56] Biobase_2.58.0                                     
## [57] MatrixGenerics_1.10.0                              
## [58] matrixStats_1.0.0                                  
## [59] GenomicRanges_1.46.1                               
## [60] GenomeInfoDb_1.34.9                                
## [61] IRanges_2.32.0                                     
## [62] S4Vectors_0.36.2                                   
## [63] BiocGenerics_0.44.0                                
## [64] BiocParallel_1.32.6                                
## [65] MethylAid_1.28.0                                   
## [66] forcats_0.5.2                                      
## [67] stringr_1.5.0                                      
## [68] dplyr_1.1.3                                        
## [69] purrr_0.3.4                                        
## [70] readr_2.1.2                                        
## [71] tidyr_1.2.1                                        
## [72] tibble_3.2.1                                       
## [73] ggplot2_3.4.3                                      
## [74] tidyverse_1.3.2                                    
## [75] rmarkdown_2.16                                     
## 
## loaded via a namespace (and not attached):
##   [1] graphlayouts_0.8.1                                
##   [2] pbapply_1.7-0                                     
##   [3] haven_2.5.1                                       
##   [4] vctrs_0.6.3                                       
##   [5] beanplot_1.3.1                                    
##   [6] blob_1.2.4                                        
##   [7] spatstat.data_3.0-1                               
##   [8] later_1.3.1                                       
##   [9] nloptr_2.0.3                                      
##  [10] DBI_1.1.3                                         
##  [11] rappdirs_0.3.3                                    
##  [12] uwot_0.1.14                                       
##  [13] zlibbioc_1.44.0                                   
##  [14] MatrixModels_0.5-1                                
##  [15] GlobalOptions_0.1.2                               
##  [16] htmlwidgets_1.5.4                                 
##  [17] future_1.32.0                                     
##  [18] leiden_0.4.3                                      
##  [19] illuminaio_0.40.0                                 
##  [20] tidygraph_1.2.2                                   
##  [21] Rcpp_1.0.10                                       
##  [22] KernSmooth_2.23-21                                
##  [23] promises_1.2.0.1                                  
##  [24] DelayedArray_0.24.0                               
##  [25] magick_2.7.4                                      
##  [26] fs_1.6.2                                          
##  [27] fastmatch_1.1-3                                   
##  [28] digest_0.6.31                                     
##  [29] png_0.1-8                                         
##  [30] nor1mix_1.3-0                                     
##  [31] sctransform_0.3.5                                 
##  [32] scatterpie_0.1.8                                  
##  [33] cowplot_1.1.1                                     
##  [34] DOSE_3.20.1                                       
##  [35] ggraph_2.0.6                                      
##  [36] pkgconfig_2.0.3                                   
##  [37] GO.db_3.14.0                                      
##  [38] gridBase_0.4-7                                    
##  [39] spatstat.random_3.1-5                             
##  [40] DelayedMatrixStats_1.16.0                         
##  [41] minqa_1.2.5                                       
##  [42] reticulate_1.30                                   
##  [43] GetoptLong_1.0.5                                  
##  [44] xfun_0.39                                         
##  [45] bslib_0.5.0                                       
##  [46] zoo_1.8-12                                        
##  [47] tidyselect_1.2.0                                  
##  [48] reshape2_1.4.4                                    
##  [49] ica_1.0-3                                         
##  [50] viridisLite_0.4.2                                 
##  [51] rtracklayer_1.54.0                                
##  [52] rlang_1.1.1                                       
##  [53] hexbin_1.28.3                                     
##  [54] jquerylib_0.1.4                                   
##  [55] glue_1.6.2                                        
##  [56] modelr_0.1.9                                      
##  [57] ggsignif_0.6.3                                    
##  [58] labeling_0.4.2                                    
##  [59] SparseM_1.81                                      
##  [60] httpuv_1.6.11                                     
##  [61] preprocessCore_1.60.2                             
##  [62] reactome.db_1.77.0                                
##  [63] DO.db_2.9                                         
##  [64] annotate_1.72.0                                   
##  [65] jsonlite_1.8.5                                    
##  [66] bit_4.0.5                                         
##  [67] mime_0.12                                         
##  [68] Rsamtools_2.10.0                                  
##  [69] stringi_1.7.12                                    
##  [70] spatstat.sparse_3.0-1                             
##  [71] scattermore_0.8                                   
##  [72] spatstat.explore_3.1-0                            
##  [73] yulab.utils_0.0.6                                 
##  [74] quadprog_1.5-8                                    
##  [75] bitops_1.0-7                                      
##  [76] cli_3.6.1                                         
##  [77] rhdf5filters_1.10.1                               
##  [78] RSQLite_2.2.17                                    
##  [79] data.table_1.14.8                                 
##  [80] timechange_0.2.0                                  
##  [81] rstudioapi_0.14                                   
##  [82] GenomicAlignments_1.30.0                          
##  [83] qvalue_2.26.0                                     
##  [84] listenv_0.9.0                                     
##  [85] miniUI_0.1.1.1                                    
##  [86] gridGraphics_0.5-1                                
##  [87] readxl_1.4.1                                      
##  [88] lifecycle_1.0.3                                   
##  [89] htm2txt_2.2.2                                     
##  [90] munsell_0.5.0                                     
##  [91] cellranger_1.1.0                                  
##  [92] caTools_1.18.2                                    
##  [93] codetools_0.2-19                                  
##  [94] coda_0.19-4                                       
##  [95] MultiAssayExperiment_1.20.0                       
##  [96] lmtest_0.9-40                                     
##  [97] missMethyl_1.28.0                                 
##  [98] xtable_1.8-4                                      
##  [99] ROCR_1.0-11                                       
## [100] googlesheets4_1.0.1                               
## [101] BiocManager_1.30.21                               
## [102] abind_1.4-5                                       
## [103] farver_2.1.1                                      
## [104] parallelly_1.36.0                                 
## [105] RANN_2.6.1                                        
## [106] aplot_0.1.7                                       
## [107] askpass_1.1                                       
## [108] ggtree_3.2.1                                      
## [109] BiocIO_1.8.0                                      
## [110] RcppAnnoy_0.0.20                                  
## [111] goftest_1.2-3                                     
## [112] patchwork_1.1.2                                   
## [113] cluster_2.1.4                                     
## [114] future.apply_1.11.0                               
## [115] tidytree_0.4.0                                    
## [116] ellipsis_0.3.2                                    
## [117] prettyunits_1.1.1                                 
## [118] lubridate_1.9.2                                   
## [119] ggridges_0.5.4                                    
## [120] googledrive_2.0.0                                 
## [121] reprex_2.0.2                                      
## [122] mclust_6.0.0                                      
## [123] igraph_1.4.3                                      
## [124] multtest_2.50.0                                   
## [125] fgsea_1.20.0                                      
## [126] gargle_1.5.0                                      
## [127] spatstat.utils_3.0-3                              
## [128] htmltools_0.5.5                                   
## [129] yaml_2.3.7                                        
## [130] utf8_1.2.3                                        
## [131] MCMCpack_1.6-3                                    
## [132] interactiveDisplayBase_1.32.0                     
## [133] XML_3.99-0.14                                     
## [134] withr_2.5.0                                       
## [135] fitdistrplus_1.1-11                               
## [136] bit64_4.0.5                                       
## [137] rngtools_1.5.2                                    
## [138] doRNG_1.8.6                                       
## [139] progressr_0.13.0                                  
## [140] GOSemSim_2.20.0                                   
## [141] memoise_2.0.1                                     
## [142] evaluate_0.21                                     
## [143] tzdb_0.4.0                                        
## [144] curl_5.0.1                                        
## [145] fansi_1.0.4                                       
## [146] highr_0.10                                        
## [147] tensor_1.5                                        
## [148] cachem_1.0.8                                      
## [149] deldir_1.0-9                                      
## [150] rjson_0.2.21                                      
## [151] rstatix_0.7.0                                     
## [152] clue_0.3-64                                       
## [153] tools_4.2.2                                       
## [154] sass_0.4.6                                        
## [155] magrittr_2.0.3                                    
## [156] RCurl_1.98-1.12                                   
## [157] car_3.1-0                                         
## [158] ape_5.7-1                                         
## [159] ggplotify_0.1.0                                   
## [160] xml2_1.3.4                                        
## [161] httr_1.4.6                                        
## [162] assertthat_0.2.1                                  
## [163] boot_1.3-28.1                                     
## [164] globals_0.16.2                                    
## [165] R6_2.5.1                                          
## [166] Rhdf5lib_1.20.0                                   
## [167] progress_1.2.2                                    
## [168] KEGGREST_1.34.0                                   
## [169] treeio_1.18.1                                     
## [170] shape_1.4.6                                       
## [171] gtools_3.9.4                                      
## [172] statmod_1.5.0                                     
## [173] BiocVersion_3.16.0                                
## [174] HDF5Array_1.22.1                                  
## [175] rhdf5_2.42.1                                      
## [176] splines_4.2.2                                     
## [177] carData_3.0-5                                     
## [178] ggfun_0.0.7                                       
## [179] colorspace_2.1-0                                  
## [180] generics_0.1.3                                    
## [181] RobustRankAggreg_1.2.1                            
## [182] pillar_1.9.0                                      
## [183] tweenr_2.0.2                                      
## [184] sp_1.6-1                                          
## [185] GenomeInfoDbData_1.2.9                            
## [186] plyr_1.8.8                                        
## [187] gtable_0.3.3                                      
## [188] rvest_1.0.3                                       
## [189] restfulr_0.0.15                                   
## [190] knitr_1.43                                        
## [191] shadowtext_0.1.2                                  
## [192] biomaRt_2.50.3                                    
## [193] fastmap_1.1.1                                     
## [194] Cairo_1.6-0                                       
## [195] doParallel_1.0.17                                 
## [196] quantreg_5.94                                     
## [197] broom_1.0.1                                       
## [198] openssl_2.0.6                                     
## [199] scales_1.2.1                                      
## [200] filelock_1.0.2                                    
## [201] backports_1.4.1                                   
## [202] RaggedExperiment_1.18.0                           
## [203] base64_2.0.1                                      
## [204] vroom_1.5.7                                       
## [205] enrichplot_1.14.2                                 
## [206] mcmc_0.9-7                                        
## [207] hms_1.1.2                                         
## [208] ggforce_0.3.4                                     
## [209] scrime_1.3.5                                      
## [210] Rtsne_0.16                                        
## [211] shiny_1.7.2                                       
## [212] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.0
## [213] polyclip_1.10-4                                   
## [214] numDeriv_2016.8-1.1                               
## [215] siggenes_1.68.0                                   
## [216] lazyeval_0.2.2                                    
## [217] crayon_1.5.2                                      
## [218] downloader_0.4                                    
## [219] sparseMatrixStats_1.10.0                          
## [220] viridis_0.6.2                                     
## [221] reshape_0.8.9                                     
## [222] compiler_4.2.2                                    
## [223] spatstat.geom_3.2-1

Clear

rm(list=ls())