This script loads in the differentially expressed genes in cis of muscle CpGs and analyses if their expression changes with DNAm.


Setup

Load packages

library(edgeR)
library(cinaR)
library(limma)
library(tidyverse)
library(GenomicFeatures)
library(AnnotationHub)
library(SummarizedExperiment)
library(lme4)
library(lmerTest)

Load df which maps CpGs to genes within 100kb

load('../GOTO_Data/DEGs/Muscle-100kb.Rdata')
head(df)
##          cpg        gene_ens     gene
## 1 cg26998535 ENSG00000120029 C10orf76
## 2 cg26998535 ENSG00000120049   KCNIP2
## 3 cg03045139 ENSG00000085365   SCAMP1
## 4 cg03045139 ENSG00000145685   LHFPL2
## 5 cg19003556 ENSG00000171408    PDE7B
## 6 cg00353432 ENSG00000064393    HIPK2

Load results of DEG analysis

load('../GOTO_Data/DEGs/Muscle-DEG.Rdata')

Merge

deg$gene_ens <- rownames(deg)
deg <- deg %>% 
  dplyr::select(gene_ens, 
                logFC, deg_p = pvalue, 
                deg_padj = padj)

df <- inner_join(df, deg, by='gene_ens')
head(df)
##          cpg        gene_ens     gene       logFC        deg_p     deg_padj
## 1 cg26998535 ENSG00000120029 C10orf76 -0.15702014 4.918806e-06 5.868644e-05
## 2 cg03045139 ENSG00000085365   SCAMP1 -0.06742307 1.008167e-02 2.422401e-02
## 3 cg03045139 ENSG00000145685   LHFPL2  0.36905967 1.564875e-07 4.540984e-06
## 4 cg03982376 ENSG00000055208     TAB2 -0.17684282 2.927471e-08 2.070958e-06
## 5 cg03982376 ENSG00000055211    GINM1 -0.09815442 3.029579e-04 1.397646e-03
## 6 cg13290921 ENSG00000196233     LCOR  0.11530761 6.993477e-03 1.805017e-02

DNAm data

Load top CpG results and methData

load('../GOTO_Data/GOTO_methData-filtered.Rdata')

Save only muscle samples

methData <- methData[ , methData$tissue == 'muscle']

Convert betas to data frame

beta_rows <- methData$Basename
betas <- as.data.frame(t(assay(methData)))
rownames(betas) <- beta_rows

Save only CpGs to be tested

betas <- betas %>% dplyr::select(any_of(df$cpg))
dim(betas)
## [1] 160  95

Phenotype data

load("../GOTO_Data/GOTO_targets-filtered.Rdata")

Filter muscle

targets <- targets %>% 
  filter(tissue == 'muscle')

Save covariates

targets <- targets %>% 
  dplyr::select(IOP2_ID, timepoint, age, sex, smoke,
                plate, array_row, Basename) %>% 
  mutate(ID = paste0(IOP2_ID, '_', timepoint))

RNAseq data

Load functions from Erik

source('../GOTO_Data/RNAseq/goto.rnaseq.functions.R')

Load RNAseq data

pathIN_dat <- "../GOTO_Data/RNAseq/merge.gene.counts_biopet_13052016.RData"
pathIN_cov <- "../GOTO_Data/RNAseq/muscle_QC_covariates_filesv2.csv"

filt.samp <- "tissue_muscle|qc_sexswitch|qc_multdim2|qc_rep1|complete_pairs"

dat1 <- read.gotornaseq(pathIN_dat = pathIN_dat, 
                        pathIN_cov, 
                        filt.samp = filt.samp, 
                        type = 'voom-export', 
                        quiet = FALSE)
## ||| PREPARING GOTO RNASEQ DATA 
## || READING DATA 
## | Loading RNASEQ .. OK! 
##    [555 samples x 56520 features] 
## | Reading COVARIATES .. OK! 
##    [maintaining 174 samples x 117 features] 
## | Merging data .. OK! 
##    [555 samples x 56637 features] 
## || SUBSETTING SAMPLES 
## | Subsetting SAMPLES on ['tissue_muscle']; PASS: 174 out of 555
## | Subsetting SAMPLES on ['qc_sexswitch']; PASS: 172 out of 174
## | Subsetting SAMPLES on ['qc_multdim2']; PASS: 168 out of 172
## | Subsetting SAMPLES on ['qc_rep1']; PASS: 168 out of 168
## | Subsetting SAMPLES on ['complete_pairs']; PASS: 162 out of 168
## || TRANSFORMING DATA 
## | VOOM .. OK!
## | DONE!
goto_exp <- dat1[["dat"]]

Check if RNAseq data exists for all genes

check <- df$gene_ens %in% colnames(goto_exp)
xtabs(~check)
## check
## TRUE 
##  170

Save genes we will check

av_genes <- df$gene_ens
head(av_genes)
## [1] "ENSG00000120029" "ENSG00000085365" "ENSG00000145685" "ENSG00000055208"
## [5] "ENSG00000055211" "ENSG00000196233"

Filter covariates and genes

goto_exp <- goto_exp %>%  
  dplyr::select(IOP2_ID = sampID2, 
                timepoint = intervention, 
                flowcell,
                all_of(av_genes)) %>% 
  mutate(
  ID = str_c(IOP2_ID, '_', timepoint)
)

Merge with samples we have DNAm data for

ID_list <- targets %>% 
  mutate(
    ID = paste0(IOP2_ID, '_', timepoint)) %>% 
  dplyr::select(ID, Basename)
exp_df <- inner_join(ID_list, goto_exp, by = 'ID')
dim(exp_df)
## [1] 148 171

Ordering and filtering

Ensure DNAm data for all samples

targets <- targets %>% filter(Basename %in% rownames(betas))

print(paste0('We have complete covariate and DNAm data for ',
             nrow(targets), ' samples'))
## [1] "We have complete covariate and DNAm data for 160 samples"

Ensure expression data for all samples

targets <- targets %>% filter(Basename %in% exp_df$Basename)

print(paste0('We have complete data for everything for ',
             nrow(targets), ' samples'))
## [1] "We have complete data for everything for 148 samples"

Order uuid alphabetically

targets <- targets[order(targets$Basename),]
rownames(targets) <- targets$Basename
dim(targets)
## [1] 148   9

Order DNAm data

betas <- betas[rownames(betas) %in% targets$Basename, ]
betas <- betas[order(rownames(betas)), ]
dim(betas)
## [1] 148  95

Order expression data frame

exp_df <- exp_df[exp_df$Basename %in% targets$Basename, ]
exp_df <- exp_df[order(exp_df$Basename), ]
dim(exp_df)
## [1] 148 171

Save

save(betas, exp_df, targets, df,
     file='../GOTO_Data/eQTM/all_eQTMobjects-muscle.Rdata')

Analysis

Bind data frames

lm_df <- cbind(targets,
               betas,
               exp_df)

Run models

for(i in 1:nrow(df)){
  cpg <- df$cpg[i]
  gene <- df$gene[i]
  gene_ens <- df$gene_ens[i]
  
  fit <- lmer(substitute(cpg ~ gene_ens + age + sex + smoke +
                           plate + array_row + flowcell + (1|IOP2_ID),
                         list(cpg = as.name(cpg),
                              gene_ens = as.name(gene_ens))),
              data=lm_df)
  
  if(i == 1){
    out <- data.frame(
      cpg = cpg,
      gene = gene,
      gene_ens = gene_ens,
      es = coef(summary(fit))[2,1],
      se = coef(summary(fit))[2,2],
      p = coef(summary(fit))[2,5]
    )
  } else {
    out <- rbind(out,
                 data.frame(
                   cpg = cpg,
                   gene = gene,
                   gene_ens = gene_ens,
                   es = coef(summary(fit))[2,1],
                   se = coef(summary(fit))[2,2],
                   p = coef(summary(fit))[2,5]))
  }
}

Adjust p-values

out$padj <- p.adjust(out$p, method='fdr')

Inspect top

out %>% arrange(padj) %>% head()
##          cpg   gene        gene_ens          es          se            p
## 1 cg17411016  MCFD2 ENSG00000180398  0.15740085 0.017187651 3.823161e-15
## 2 cg09312464  FSCN1 ENSG00000075618 -0.03247148 0.004286796 5.587712e-12
## 3 cg13585930 LRRC20 ENSG00000172731  0.19499532 0.025740939 6.250324e-12
## 4 cg12595459  EXTL3 ENSG00000012232  0.08831114 0.012112964 2.871282e-11
## 5 cg02849956   DPP9 ENSG00000142002  0.13413163 0.020775060 3.549895e-09
## 6 cg21730012 INPP5A ENSG00000068383  0.08127165 0.012753967 3.260426e-09
##           padj
## 1 6.499374e-13
## 2 3.541850e-10
## 3 3.541850e-10
## 4 1.220295e-09
## 5 1.005803e-07
## 6 1.005803e-07
eqtm <- out %>% filter(padj <= 0.05) %>% 
  arrange(padj)

Save

Add DEG data

eqtm <- eqtm %>% 
  dplyr::select(cpg, gene,
                eqtm_es = es, eqtm_se = se, eqtm_p = p, 
                eqtm_padj = padj)

eqtm <- inner_join(eqtm, df, by=c('cpg', 'gene'))
eqtm <- eqtm %>% arrange(eqtm_padj)
eqtm
##           cpg      gene      eqtm_es     eqtm_se       eqtm_p    eqtm_padj
## 1  cg17411016     MCFD2  0.157400854 0.017187651 3.823161e-15 6.499374e-13
## 2  cg09312464     FSCN1 -0.032471479 0.004286796 5.587712e-12 3.541850e-10
## 3  cg13585930    LRRC20  0.194995320 0.025740939 6.250324e-12 3.541850e-10
## 4  cg12595459     EXTL3  0.088311140 0.012112964 2.871282e-11 1.220295e-09
## 5  cg02849956      DPP9  0.134131630 0.020775060 3.549895e-09 1.005803e-07
## 6  cg21730012    INPP5A  0.081271645 0.012753967 3.260426e-09 1.005803e-07
## 7  cg20748397      FLII  0.083742316 0.013458658 6.721914e-09 1.632465e-07
## 8  cg03045139    LHFPL2 -0.029409824 0.004755106 8.095718e-09 1.720340e-07
## 9  cg02233071     RUNX1 -0.019621864 0.003488165 1.303993e-07 2.463097e-06
## 10 cg20748397    ALKBH5  0.093361867 0.016876192 1.684174e-07 2.863095e-06
## 11 cg25981106   HSD11B1  0.036449501 0.006614025 2.271127e-07 3.509924e-06
## 12 cg17411016     TTC7A -0.047559599 0.008648645 2.478714e-07 3.511512e-06
## 13 cg21005024     GRB10  0.083076885 0.015727619 5.416367e-07 7.082942e-06
## 14 cg14426392    ATP1A1 -0.073537402 0.015044233 2.974239e-06 3.444944e-05
## 15 cg17357895   EXOC3L1 -0.055428591 0.011364258 3.039657e-06 3.444944e-05
## 16 cg12402318     TMOD3 -0.034574387 0.007117855 3.313091e-06 3.520159e-05
## 17 cg20748397      GID4  0.075895925 0.015864612 4.591350e-06 4.591350e-05
## 18 cg07827395   FAM220A  0.050244391 0.010592172 5.386461e-06 5.087213e-05
## 19 cg07827395      RAC1  0.087542714 0.019004388 9.766815e-06 8.738729e-05
## 20 cg20617626  ARHGEF17 -0.040559514 0.008880707 1.124324e-05 9.556757e-05
## 21 cg08416530    AGPAT2  0.082866760 0.018230639 1.324342e-05 1.072086e-04
## 22 cg17357895     FHOD1  0.125483416 0.028134007 1.734577e-05 1.340355e-04
## 23 cg17357895   PLEKHG4 -0.048587862 0.010970917 1.969523e-05 1.455734e-04
## 24 cg05501756       SRL -0.070227130 0.015928670 2.138607e-05 1.514846e-04
## 25 cg16350675     CHRND -0.015198542 0.003463090 2.465686e-05 1.676666e-04
## 26 cg09312464    RNF216  0.063427585 0.014627747 2.876347e-05 1.880688e-04
## 27 cg17370665   ZFP36L1 -0.069533355 0.016307907 3.800650e-05 2.393002e-04
## 28 cg17357895      E2F4  0.148782291 0.035351644 4.716693e-05 2.863707e-04
## 29 cg14189116   CAPRIN2 -0.030912362 0.007611246 8.319159e-05 4.876748e-04
## 30 cg11561701      CRKL  0.064388398 0.016147257 1.184102e-04 6.493465e-04
## 31 cg25225070    ZNF143  0.073937556 0.018626511 1.181461e-04 6.493465e-04
## 32 cg04451259     PAMR1 -0.037002200 0.009393477 1.341613e-04 7.127318e-04
## 33 cg11835462     CHRND -0.013728424 0.003537843 1.687402e-04 8.525401e-04
## 34 cg27187848   PCDHGC5 -0.013097760 0.003384701 1.705080e-04 8.525401e-04
## 35 cg22898055      MDH2  0.100031225 0.025944028 1.795611e-04 8.721540e-04
## 36 cg24857465     FDFT1  0.062909019 0.016322164 1.861734e-04 8.791520e-04
## 37 cg04814966      PPIF  0.038804887 0.010111479 1.923360e-04 8.837060e-04
## 38 cg12772738    RPRD1B  0.150386532 0.040554524 3.162793e-04 1.414934e-03
## 39 cg27187848   PCDHGC3 -0.027592124 0.007705247 4.818472e-04 2.100360e-03
## 40 cg12166519      DLL1 -0.025823675 0.007281040 5.490563e-04 2.333489e-03
## 41 cg15982707    ADAM19 -0.047866096 0.014023122 8.589332e-04 3.561430e-03
## 42 cg17357895 KIAA0895L -0.030884478 0.009136357 9.522862e-04 3.854492e-03
## 43 cg27187848  PCDHGA12 -0.020590457 0.006243738 1.256104e-03 4.965994e-03
## 44 cg21017748      PPID  0.064318109 0.019542969 1.293529e-03 4.997727e-03
## 45 cg04275661       FYN -0.049524518 0.015444914 1.735565e-03 6.556578e-03
## 46 cg05501756     GLIS2  0.024895674 0.007870881 1.940911e-03 7.172932e-03
## 47 cg22898055  TMEM120A  0.041337368 0.013180446 2.115480e-03 7.651738e-03
## 48 cg17628730      BRF2  0.045645933 0.014695550 2.428566e-03 8.601171e-03
## 49 cg03045139    SCAMP1  0.045450143 0.015005142 2.953224e-03 1.024588e-02
## 50 cg09232225    FAM96B  0.038613628 0.012756509 3.084980e-03 1.048893e-02
## 51 cg16845233    JMJD1C -0.027427859 0.009399620 4.153732e-03 1.384577e-02
## 52 cg05008948    ZNF394  0.063119538 0.021839091 4.528393e-03 1.480436e-02
## 53 cg12001774      NET1  0.038861200 0.013530389 4.754314e-03 1.524969e-02
## 54 cg11012616     PSMA6  0.039681665 0.014006410 5.377104e-03 1.662014e-02
## 55 cg11561701     THAP7  0.046485725 0.016372217 5.294795e-03 1.662014e-02
## 56 cg05018467     CHSY1 -0.035195720 0.012476454 5.753174e-03 1.715859e-02
## 57 cg05018467     LRRK1 -0.019099899 0.006786301 5.702319e-03 1.715859e-02
## 58 cg17633300  ATP6V0E1  0.043213556 0.015942420 7.610094e-03 2.230545e-02
## 59 cg14343713     SPCS2  0.047336298 0.017736435 8.597398e-03 2.435929e-02
## 60 cg25114611     FKBP5 -0.013592675 0.005093139 8.566963e-03 2.435929e-02
## 61 cg21342383    ADAM12 -0.003687336 0.001404930 9.698942e-03 2.702984e-02
## 62 cg23903301      CD59  0.049560742 0.019512471 1.224948e-02 3.358730e-02
## 63 cg17628730     PROSC  0.058537487 0.023258816 1.308589e-02 3.475940e-02
## 64 cg19728396      UCK2 -0.031706375 0.012578863 1.291102e-02 3.475940e-02
## 65 cg18012268      FPR1  0.004075916 0.001625050 1.337996e-02 3.499374e-02
## 66 cg20948500     WSCD1 -0.020266304 0.008127244 1.388949e-02 3.577596e-02
## 67 cg12402318      LEO1 -0.023672427 0.009542741 1.437149e-02 3.646498e-02
## 68 cg20748397      DRG2  0.051306382 0.020792213 1.488932e-02 3.668382e-02
## 69 cg25225070    SWAP70 -0.034231570 0.013839906 1.468817e-02 3.668382e-02
## 70 cg11561701     LZTR1 -0.042931914 0.017789563 1.728904e-02 4.198768e-02
## 71 cg01242348     CDH24  0.006117016 0.002559330 1.827413e-02 4.375495e-02
## 72 cg12402318     TMOD2 -0.022064948 0.009277859 1.885242e-02 4.451266e-02
##           gene_ens       logFC        deg_p     deg_padj
## 1  ENSG00000180398 -0.14640962 3.179061e-07 7.585708e-06
## 2  ENSG00000075618  0.39904836 8.127653e-07 1.406084e-05
## 3  ENSG00000172731 -0.21152358 4.380047e-08 2.164995e-06
## 4  ENSG00000012232 -0.13394497 1.599257e-04 8.645985e-04
## 5  ENSG00000142002 -0.17176130 2.679621e-07 7.131913e-06
## 6  ENSG00000068383 -0.20530741 1.033761e-07 3.576811e-06
## 7  ENSG00000177731 -0.22135965 6.616717e-08 2.861730e-06
## 8  ENSG00000145685  0.36905967 1.564875e-07 4.540984e-06
## 9  ENSG00000159216  0.75757718 1.574908e-07 4.540984e-06
## 10 ENSG00000091542 -0.12465998 1.845921e-04 9.392480e-04
## 11 ENSG00000117594 -0.46462302 2.070661e-09 3.788328e-07
## 12 ENSG00000068724  0.20079066 6.261185e-04 2.610084e-03
## 13 ENSG00000106070 -0.25439754 2.401900e-05 2.130917e-04
## 14 ENSG00000163399  0.23513217 4.636613e-06 5.868644e-05
## 15 ENSG00000179044  0.25161186 3.430684e-05 2.580471e-04
## 16 ENSG00000138594  0.24084560 3.336614e-07 7.585708e-06
## 17 ENSG00000141034 -0.10998734 1.994585e-03 6.510626e-03
## 18 ENSG00000178397 -0.25835500 4.734234e-06 5.868644e-05
## 19 ENSG00000136238 -0.13163579 1.961784e-05 1.834533e-04
## 20 ENSG00000110237  0.14261724 1.004377e-04 5.991628e-04
## 21 ENSG00000169692 -0.27091304 3.284677e-09 3.788328e-07
## 22 ENSG00000135723 -0.14714827 4.868055e-06 5.868644e-05
## 23 ENSG00000196155  0.23391099 1.959657e-04 9.826684e-04
## 24 ENSG00000185739 -0.15907503 6.464822e-06 7.456095e-05
## 25 ENSG00000135902  0.56304027 5.792258e-05 3.711335e-04
## 26 ENSG00000011275 -0.11510384 1.120697e-05 1.211753e-04
## 27 ENSG00000185650  0.17685073 3.790112e-05 2.750769e-04
## 28 ENSG00000205250 -0.08330454 1.590077e-03 5.393791e-03
## 29 ENSG00000110888  0.31069078 1.163706e-05 1.220128e-04
## 30 ENSG00000099942 -0.15994816 4.127605e-07 8.400890e-06
## 31 ENSG00000166478 -0.13769864 5.086119e-05 3.384225e-04
## 32 ENSG00000149090  0.24028197 1.624942e-02 3.748200e-02
## 33 ENSG00000135902  0.56304027 5.792258e-05 3.711335e-04
## 34 ENSG00000240764  0.17092061 1.004845e-03 3.658594e-03
## 35 ENSG00000146701 -0.17739010 2.212181e-05 2.014249e-04
## 36 ENSG00000079459 -0.19705638 8.047537e-07 1.406084e-05
## 37 ENSG00000108179 -0.20059622 3.816095e-05 2.750769e-04
## 38 ENSG00000101413 -0.08847153 2.490939e-05 2.154662e-04
## 39 ENSG00000240184  0.26960947 4.269216e-05 2.954298e-04
## 40 ENSG00000198719  0.24586824 4.219877e-05 2.954298e-04
## 41 ENSG00000135074  0.14330686 4.529491e-03 1.263874e-02
## 42 ENSG00000196123  0.35528187 3.132751e-06 4.428785e-05
## 43 ENSG00000253159  0.19566731 5.548541e-04 2.393818e-03
## 44 ENSG00000171497 -0.08558962 3.381517e-03 1.008625e-02
## 45 ENSG00000010810  0.25645632 9.578755e-08 3.576811e-06
## 46 ENSG00000126603  0.14621073 2.303904e-02 4.831216e-02
## 47 ENSG00000189077 -0.31730520 2.931310e-05 2.306085e-04
## 48 ENSG00000104221 -0.20974958 2.992713e-08 2.070958e-06
## 49 ENSG00000085365 -0.06742307 1.008167e-02 2.422401e-02
## 50 ENSG00000166595 -0.18103037 1.015776e-06 1.673613e-05
## 51 ENSG00000171988  0.12010751 1.438238e-03 5.039174e-03
## 52 ENSG00000160908 -0.11614587 2.158491e-04 1.066911e-03
## 53 ENSG00000173848 -0.09120973 2.932302e-03 8.899795e-03
## 54 ENSG00000100902 -0.16641829 5.604026e-04 2.393818e-03
## 55 ENSG00000184436 -0.14986757 3.199989e-06 4.428785e-05
## 56 ENSG00000131873  0.13730863 1.451969e-03 5.039174e-03
## 57 ENSG00000154237  0.20837733 2.429897e-03 7.713251e-03
## 58 ENSG00000113732 -0.06018372 7.424689e-03 1.875141e-02
## 59 ENSG00000118363 -0.07818893 2.807821e-03 8.674160e-03
## 60 ENSG00000096060 -0.31176637 8.304411e-04 3.202579e-03
## 61 ENSG00000148848  0.61476058 1.294415e-05 1.248003e-04
## 62 ENSG00000085063 -0.12600490 6.284564e-05 3.953562e-04
## 63 ENSG00000147471 -0.12930591 1.252590e-05 1.248003e-04
## 64 ENSG00000143179  0.18815173 8.330408e-04 3.202579e-03
## 65 ENSG00000171051 -0.39887436 1.526962e-02 3.545830e-02
## 66 ENSG00000179314 -0.17133540 1.118854e-02 2.651531e-02
## 67 ENSG00000166477  0.16631511 3.189635e-05 2.452475e-04
## 68 ENSG00000108591 -0.10358180 2.310726e-04 1.126072e-03
## 69 ENSG00000133789  0.13678629 1.468369e-03 5.039174e-03
## 70 ENSG00000099949  0.08219461 7.800257e-03 1.955717e-02
## 71 ENSG00000139880  0.28527872 1.232179e-04 7.093609e-04
## 72 ENSG00000128872  0.17186111 2.855928e-05 2.306085e-04

Save

save(out, eqtm, file='../GOTO_Data/eQTM/GOTO-muscle_eQTM.Rdata')
write_csv(eqtm, file='../GOTO_Data/Tables/ST07.csv')

Session Info

sessionInfo()
## R version 4.2.2 (2022-10-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Rocky Linux 8.10 (Green Obsidian)
## 
## Matrix products: default
## BLAS/LAPACK: /usr/lib64/libopenblas-r0.3.15.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] AnnotationHub_3.2.2                                
##  [2] BiocFileCache_2.2.1                                
##  [3] dbplyr_2.2.1                                       
##  [4] cinaR_0.2.3                                        
##  [5] edgeR_3.40.2                                       
##  [6] ggpubr_0.4.0                                       
##  [7] GEOquery_2.62.2                                    
##  [8] MuSiC_0.2.0                                        
##  [9] nnls_1.4                                           
## [10] gplots_3.1.3                                       
## [11] plotly_4.10.1                                      
## [12] SeuratObject_4.1.3                                 
## [13] Seurat_4.3.0                                       
## [14] gridExtra_2.3                                      
## [15] lattice_0.21-8                                     
## [16] bacon_1.22.0                                       
## [17] ellipse_0.4.5                                      
## [18] methylGSA_1.12.0                                   
## [19] sva_3.42.0                                         
## [20] genefilter_1.76.0                                  
## [21] mgcv_1.8-42                                        
## [22] nlme_3.1-162                                       
## [23] limma_3.54.2                                       
## [24] lmerTest_3.1-3                                     
## [25] lme4_1.1-30                                        
## [26] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
## [27] snpStats_1.44.0                                    
## [28] survival_3.5-5                                     
## [29] ggrepel_0.9.1                                      
## [30] ggfortify_0.4.14                                   
## [31] irlba_2.3.5.1                                      
## [32] Matrix_1.5-4.1                                     
## [33] omicsPrint_1.14.0                                  
## [34] MASS_7.3-60                                        
## [35] DNAmArray_2.0.0                                    
## [36] pls_2.8-2                                          
## [37] FDb.InfiniumMethylation.hg19_2.2.0                 
## [38] org.Hs.eg.db_3.14.0                                
## [39] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2            
## [40] GenomicFeatures_1.46.5                             
## [41] AnnotationDbi_1.56.2                               
## [42] IlluminaHumanMethylationEPICmanifest_0.3.0         
## [43] minfi_1.40.0                                       
## [44] bumphunter_1.36.0                                  
## [45] locfit_1.5-9.8                                     
## [46] iterators_1.0.14                                   
## [47] foreach_1.5.2                                      
## [48] Biostrings_2.62.0                                  
## [49] XVector_0.34.0                                     
## [50] SummarizedExperiment_1.24.0                        
## [51] Biobase_2.58.0                                     
## [52] MatrixGenerics_1.10.0                              
## [53] matrixStats_1.0.0                                  
## [54] GenomicRanges_1.46.1                               
## [55] GenomeInfoDb_1.34.9                                
## [56] IRanges_2.32.0                                     
## [57] S4Vectors_0.36.2                                   
## [58] BiocGenerics_0.44.0                                
## [59] BiocParallel_1.32.6                                
## [60] MethylAid_1.28.0                                   
## [61] forcats_0.5.2                                      
## [62] stringr_1.5.0                                      
## [63] dplyr_1.1.3                                        
## [64] purrr_0.3.4                                        
## [65] readr_2.1.2                                        
## [66] tidyr_1.2.1                                        
## [67] tibble_3.2.1                                       
## [68] ggplot2_3.4.3                                      
## [69] tidyverse_1.3.2                                    
## [70] rmarkdown_2.16                                     
## 
## loaded via a namespace (and not attached):
##   [1] ica_1.0-3                                         
##   [2] Rsamtools_2.10.0                                  
##   [3] lmtest_0.9-40                                     
##   [4] crayon_1.5.2                                      
##   [5] rhdf5filters_1.10.1                               
##   [6] backports_1.4.1                                   
##   [7] reprex_2.0.2                                      
##   [8] GOSemSim_2.20.0                                   
##   [9] rlang_1.1.1                                       
##  [10] ROCR_1.0-11                                       
##  [11] readxl_1.4.1                                      
##  [12] SparseM_1.81                                      
##  [13] nloptr_2.0.3                                      
##  [14] filelock_1.0.2                                    
##  [15] rjson_0.2.21                                      
##  [16] bit64_4.0.5                                       
##  [17] glue_1.6.2                                        
##  [18] sctransform_0.3.5                                 
##  [19] rngtools_1.5.2                                    
##  [20] spatstat.sparse_3.0-1                             
##  [21] mcmc_0.9-7                                        
##  [22] spatstat.geom_3.2-1                               
##  [23] DOSE_3.20.1                                       
##  [24] haven_2.5.1                                       
##  [25] tidyselect_1.2.0                                  
##  [26] fitdistrplus_1.1-11                               
##  [27] XML_3.99-0.14                                     
##  [28] zoo_1.8-12                                        
##  [29] GenomicAlignments_1.30.0                          
##  [30] MatrixModels_0.5-1                                
##  [31] xtable_1.8-4                                      
##  [32] magrittr_2.0.3                                    
##  [33] evaluate_0.21                                     
##  [34] cli_3.6.1                                         
##  [35] zlibbioc_1.44.0                                   
##  [36] miniUI_0.1.1.1                                    
##  [37] rstudioapi_0.14                                   
##  [38] doRNG_1.8.6                                       
##  [39] sp_1.6-1                                          
##  [40] MultiAssayExperiment_1.20.0                       
##  [41] bslib_0.5.0                                       
##  [42] fastmatch_1.1-3                                   
##  [43] treeio_1.18.1                                     
##  [44] shiny_1.7.2                                       
##  [45] xfun_0.39                                         
##  [46] askpass_1.1                                       
##  [47] multtest_2.50.0                                   
##  [48] cluster_2.1.4                                     
##  [49] caTools_1.18.2                                    
##  [50] tidygraph_1.2.2                                   
##  [51] KEGGREST_1.34.0                                   
##  [52] interactiveDisplayBase_1.32.0                     
##  [53] quantreg_5.94                                     
##  [54] base64_2.0.1                                      
##  [55] ape_5.7-1                                         
##  [56] scrime_1.3.5                                      
##  [57] listenv_0.9.0                                     
##  [58] png_0.1-8                                         
##  [59] reshape_0.8.9                                     
##  [60] future_1.32.0                                     
##  [61] withr_2.5.0                                       
##  [62] bitops_1.0-7                                      
##  [63] ggforce_0.3.4                                     
##  [64] plyr_1.8.8                                        
##  [65] cellranger_1.1.0                                  
##  [66] coda_0.19-4                                       
##  [67] pillar_1.9.0                                      
##  [68] cachem_1.0.8                                      
##  [69] fs_1.6.2                                          
##  [70] clusterProfiler_4.2.2                             
##  [71] DelayedMatrixStats_1.16.0                         
##  [72] vctrs_0.6.3                                       
##  [73] ellipsis_0.3.2                                    
##  [74] generics_0.1.3                                    
##  [75] tools_4.2.2                                       
##  [76] munsell_0.5.0                                     
##  [77] tweenr_2.0.2                                      
##  [78] fgsea_1.20.0                                      
##  [79] DelayedArray_0.24.0                               
##  [80] abind_1.4-5                                       
##  [81] fastmap_1.1.1                                     
##  [82] compiler_4.2.2                                    
##  [83] httpuv_1.6.11                                     
##  [84] rtracklayer_1.54.0                                
##  [85] beanplot_1.3.1                                    
##  [86] MCMCpack_1.6-3                                    
##  [87] GenomeInfoDbData_1.2.9                            
##  [88] deldir_1.0-9                                      
##  [89] utf8_1.2.3                                        
##  [90] later_1.3.1                                       
##  [91] RobustRankAggreg_1.2.1                            
##  [92] jsonlite_1.8.5                                    
##  [93] scales_1.2.1                                      
##  [94] carData_3.0-5                                     
##  [95] pbapply_1.7-0                                     
##  [96] tidytree_0.4.0                                    
##  [97] sparseMatrixStats_1.10.0                          
##  [98] lazyeval_0.2.2                                    
##  [99] promises_1.2.0.1                                  
## [100] car_3.1-0                                         
## [101] goftest_1.2-3                                     
## [102] spatstat.utils_3.0-3                              
## [103] reticulate_1.30                                   
## [104] htm2txt_2.2.2                                     
## [105] nor1mix_1.3-0                                     
## [106] cowplot_1.1.1                                     
## [107] statmod_1.5.0                                     
## [108] siggenes_1.68.0                                   
## [109] Rtsne_0.16                                        
## [110] downloader_0.4                                    
## [111] uwot_0.1.14                                       
## [112] igraph_1.4.3                                      
## [113] HDF5Array_1.22.1                                  
## [114] numDeriv_2016.8-1.1                               
## [115] yaml_2.3.7                                        
## [116] htmltools_0.5.5                                   
## [117] memoise_2.0.1                                     
## [118] BiocIO_1.8.0                                      
## [119] graphlayouts_0.8.1                                
## [120] quadprog_1.5-8                                    
## [121] viridisLite_0.4.2                                 
## [122] digest_0.6.31                                     
## [123] assertthat_0.2.1                                  
## [124] mime_0.12                                         
## [125] rappdirs_0.3.3                                    
## [126] RSQLite_2.2.17                                    
## [127] yulab.utils_0.0.6                                 
## [128] future.apply_1.11.0                               
## [129] data.table_1.14.8                                 
## [130] blob_1.2.4                                        
## [131] preprocessCore_1.60.2                             
## [132] splines_4.2.2                                     
## [133] labeling_0.4.2                                    
## [134] Rhdf5lib_1.20.0                                   
## [135] illuminaio_0.40.0                                 
## [136] googledrive_2.0.0                                 
## [137] RaggedExperiment_1.18.0                           
## [138] RCurl_1.98-1.12                                   
## [139] broom_1.0.1                                       
## [140] hms_1.1.2                                         
## [141] modelr_0.1.9                                      
## [142] rhdf5_2.42.1                                      
## [143] colorspace_2.1-0                                  
## [144] BiocManager_1.30.21                               
## [145] aplot_0.1.7                                       
## [146] sass_0.4.6                                        
## [147] Rcpp_1.0.10                                       
## [148] mclust_6.0.0                                      
## [149] RANN_2.6.1                                        
## [150] enrichplot_1.14.2                                 
## [151] fansi_1.0.4                                       
## [152] tzdb_0.4.0                                        
## [153] parallelly_1.36.0                                 
## [154] R6_2.5.1                                          
## [155] grid_4.2.2                                        
## [156] ggridges_0.5.4                                    
## [157] lifecycle_1.0.3                                   
## [158] ggsignif_0.6.3                                    
## [159] curl_5.0.1                                        
## [160] googlesheets4_1.0.1                               
## [161] minqa_1.2.5                                       
## [162] leiden_0.4.3                                      
## [163] jquerylib_0.1.4                                   
## [164] DO.db_2.9                                         
## [165] qvalue_2.26.0                                     
## [166] RcppAnnoy_0.0.20                                  
## [167] RColorBrewer_1.1-3                                
## [168] spatstat.explore_3.1-0                            
## [169] htmlwidgets_1.5.4                                 
## [170] polyclip_1.10-4                                   
## [171] biomaRt_2.50.3                                    
## [172] missMethyl_1.28.0                                 
## [173] shadowtext_0.1.2                                  
## [174] timechange_0.2.0                                  
## [175] gridGraphics_0.5-1                                
## [176] reactome.db_1.77.0                                
## [177] rvest_1.0.3                                       
## [178] globals_0.16.2                                    
## [179] openssl_2.0.6                                     
## [180] spatstat.random_3.1-5                             
## [181] patchwork_1.1.2                                   
## [182] progressr_0.13.0                                  
## [183] codetools_0.2-19                                  
## [184] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.0
## [185] lubridate_1.9.2                                   
## [186] GO.db_3.14.0                                      
## [187] gtools_3.9.4                                      
## [188] prettyunits_1.1.1                                 
## [189] gridBase_0.4-7                                    
## [190] gtable_0.3.3                                      
## [191] DBI_1.1.3                                         
## [192] tensor_1.5                                        
## [193] ggfun_0.0.7                                       
## [194] httr_1.4.6                                        
## [195] highr_0.10                                        
## [196] KernSmooth_2.23-21                                
## [197] stringi_1.7.12                                    
## [198] vroom_1.5.7                                       
## [199] progress_1.2.2                                    
## [200] reshape2_1.4.4                                    
## [201] farver_2.1.1                                      
## [202] annotate_1.72.0                                   
## [203] viridis_0.6.2                                     
## [204] hexbin_1.28.3                                     
## [205] ggtree_3.2.1                                      
## [206] xml2_1.3.4                                        
## [207] boot_1.3-28.1                                     
## [208] restfulr_0.0.15                                   
## [209] scattermore_0.8                                   
## [210] ggplotify_0.1.0                                   
## [211] BiocVersion_3.16.0                                
## [212] bit_4.0.5                                         
## [213] spatstat.data_3.0-1                               
## [214] scatterpie_0.1.8                                  
## [215] ggraph_2.0.6                                      
## [216] pkgconfig_2.0.3                                   
## [217] gargle_1.5.0                                      
## [218] rstatix_0.7.0                                     
## [219] knitr_1.43

Clear

rm(list=ls())